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1. Introduction  
 

The theoretical research on the physical system shows 

that optical solitons is still important. In order to obtain the 

optical soliton solutions, it should be examined the exact 

solution of nonlinear partial differential equations. There 

has been an increasing attention in finding the exact 

analytical solutions to nonlinear partial differential 

equations by using convenient techniques. Many different 

approaches have been presented in the literature to obtain 

optical soliton solutions such as the F-expansion method 

[1, 2], the modified simplest equation method [3, 4], the 

Lie group method [5], the homogeneous balance method 

[6], the sub-ODE method [7], (G′/G)-expansion method 

[8-10], the trial equation method [11-13], the linear 

superposition method [14, 15] and so on. Also, the authors 

in Refs. [16-22] introduced new versions of the trial 

equation method and so-called as extended trial equation 

method to search for exact solutions of the nonlinear 

partial differential equations. Soliton solutions, 

compactons, singular solitons, elliptic integral function 

solutions and Jacobi elliptic function solutions have been 

found by using these methods. These types of solutions 

appear in various areas of mathematical physics.  

In Section 2, we implement a new trial equation 

method, which is firstly defined in the paper [18], for 

nonlinear evolution equations with higher order 

nonlinearity. In Section 3, as an application, we obtain 

bright optical soliton, dark optical soliton, singular soliton 

and Jacobi elliptic function solutions to the KdV equation 

with power-law nonlinearity [9, 23]  

 

 1 0,n

t x xxxq a n q q bq        (1) 

where the coefficients a  and b  are not equal to zero, and 

2.n   The KdV equation is very important problem in 

applied mathematics and physics. The KdV equation 

describes the evolution of one-dimensional waves in many 

physical settings, including shallow-water waves, long 

internal waves, ionacoustic waves, and more. 

 

 

2. Method  
 

The extended trial equation method 

 

Step 1. We consider a nonlinear partial differential 

equation 

 , , , , 0,t x xxP u u u u        (2) 

 

and get the general traveling wave transformation 

   1 2

1

, , , , , ,
N

N j

j

u x x x t u x ct  


 
   

 


     (3) 

 

where 0   and 0c  . Substituting Eq. (3) into Eq. (2) 

yields a nonlinear ordinary differential equation  

 

 , , , , 0.N u u u u          (4) 

 

Step 2. From Ref. [25], the general solutions of Eq. 

(4) are given as 
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                 (5) 

Where 
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From Eqs. (5) and (6), we can write  
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where     and     are polynomials. Substituting 

these relations into Eq. (4) yields an equation of 

polynomial     of  : 

 

  1 0 0.s

s              (9) 

 

According to the balance principle, we can find a relation 

of ,   and .  We can compute some values of ,   

and .  

Step 3. Let the coefficients of     all be zero will 

yield an algebraic equations system: 

 

0, 0, , .i i s     (10) 

 

Solving this system, we will determine the values of 

0 0, , , , ,      and 0 , , .   

Step 4. Reduce Eq. (6) to the elementary integral form 

 

 
 

 

 
0 .

d
d 

 
    

  
       (11) 

 

Using the roots of    , we solve Eq. (11) with the help 

of MATHEMATICA and classify the exact solutions to 

Eq. (2). 

 

 
Application and results  
 

In this section, we will construct traveling wave 

solutions of the generalized forms of the KdV equations 

by using the extended trial equation method. In order to 

look for travelling wave solutions of Eq. (1), we make the 

transformation    , , ,q x t u x ct     where c 

is the wave speed. Therefore, it can be converted to the 

ordinary differential equation 

 

            1 0,nc u a n u u b u         

   (12) 

 

where the prime denotes the derivative with respect to  . 

Then, integrating this equation with respect to   one time 

and setting the integration constant to zero, we obtain 

 

      1 0.ncu au b u           (13) 

 

Using the transformation 
1

,nu v   (14) 

Eq. (13) turns into the equation 

 

  
2 2 2 2 31 0.bnvv b n v cn v an v        (15) 

 

Substituting Eqs. (7) and (8) into Eq. (15) and using 

balance principle yields 

 

2.      

 

By taking into account balancing procedure, we get results 

as follows: 

Case 1: If we take 0, 1    and 3,   then 

 

 
   2 3 2 2

2 1 3 2 1 0 1 3 2 1

0 0

3 2
, ,

2
v v

        

 

       
  

  (16) 

 

where 3 00, 0.    Thus, we have a system of 

algebraic equations from the coefficients of polynomial of 

 . Solving this algebraic system, we get 

 

   0 2 0 1 1 1 2 0 1 1

0 32 2
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2 2
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    (17) 
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0 2 2
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2 2 6
, ,

6 2 2
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c
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  (18) 

 

where 1 2 0, ,    and 1  are free parameters. Substituting 

these results into Eqs. (6) and (11), we have 
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        (19) 

 

where 
 

2
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2
.

2

b n
A
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   Integrating Eq. (19), we obtain 

the following solutions to Eq. (1). These solutions are 

respectively:  
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where 










0
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l

d
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3

2 3
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2 32

1 3
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             (24) 

Also 1 2,   and 
3  are the roots of the polynomial 

equation 

3 2 02 1

3 3 3

.
 

  
     

       

(25) 

Substituting the solutions (20)-(23) into (5) and (14), we 

have

 
  

1

2

1
0 1 1 2
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0
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              (28) 

 

and 
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                (29) 

 

 

If we take 110    and 00   for simplicity, 

then the solutions (26)-(28) can be reduced to rational 

function solution 
2

( , )
nA

q x t
x ct

 
  

 
,              (30) 

bright optical soliton solution 

 
2

( , )

cosh n

B
q x t

B x ct



  

,               (31) 

singular soliton solution 

 

 
2

( , )

sinh n

C
q x t

C x ct



  

,                   (32) 
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Here, B  and C  are the amplitudes of the solitons, 

while c  is the velocity; B and C  is the inverse width of 

the solitons. Thus, we can say that the solitons exist for 

01  . 

On the other hand, if we take 310    and 

00  , the Jacobi elliptic function solution (29) can be 

written in the form  

 
2

2 3

1 3

( , ) ,n
i iq x t D sn D x ct

 

 

 
  

 
,      (33) 

where   
1

1 2 3
nD     and  

 
 1 31

, 1,2
2

i

iD i
A

  
  . 

Remark 1. The solutions (30)-(33) obtained by using 

the extended trial equation method for Eq. (1) have been 

checked by Mathematica. To our knowledge, the rational 

function solution, the singular optical soliton solution and 

the Jacobi elliptic function solutions, which we find in this 

paper, are not shown in the previous literature. These 

results are new exact solutions of Eq. (1). 

Remark 2. When the modulus 1,l   then the 

solution (33) can be converted into dark optical soliton 

solutions of the generalized regularized long wave 

equation 

 
2

( , ) tanh n
i iq x t D D x ct    ,            (34) 

 

where 1 2 ,   and c  represents the velocity of the dark 

soliton.  

 

 

 

Case 2. If we take 2,0    and 4 then  
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2 0 1 2 3 4 1 2 3 4

1
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               (35) 

 

where 0,0 04   . Respectively, solving the algebraic equation system (10) yields as follows:  

2
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3

1
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0
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24





   

4

1
4 3
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  3

1

0 2 2

0 1

2
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24

b n
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0 1
0
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1 1
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1

2
,

2
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                           (36) 

 

where 0 1,   and 1  are free parameters. Substituting these results into (6) and (11), we have  

 0 1

4 3 23 02 1

4 4 4 4

2 ,
d

A 
  

   


  

      


                                               

(37) 

where 
  0

1 2

1 1

6 2
.

b n
A

an



 


   Integrating (37), we obtain the following exact solutions to the Eq. (1). 

When    
4

1 ,     we have 

      1
0

1

2
.

A
 


   

 
                                                         (38) 
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While      
3

1 2 ,       and 1 2 ,   we get 

   1 2
0

1 2 1

4
.

A 
 

  

 
  

  
                                          (39) 

When      
2 2

1 2 ,       and 2 1,   we obtain 
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0

1 2 2

2
ln .
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                                                        (40) 

 

While       
2

1 2 3 ,         and 1 2 3,     we obtain 
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When         1 2 3 4 ,               and 1 2 3 4 ,       we find 
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where 
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                                                            (43) 

Also 
1 , 2 , 3 and 4  are the roots of the polynomial equation 
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Substituting the solutions (38)–(42) into (5) and (14), we have  
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For simplicity, if we take 00  , then we can write the solutions (45)-(50) as follows: 
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14
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 Here, c  is the velocity, and 1B  and 2B  are the inverse widths of the solitons.  

 

Remark 3. The solutions (51)-(56) obtained by using the extended trial equation method for Eq. (1) have not been 

found in the literature, and these results are new. 

 

Case 3. If we take 0,   3   and 5   then  
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where 5 00, 0.  
 
Respectively, solving the algebraic equation system (10) yields 
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where 1 0 2, ,    and 3  are free parameters. Substituting these results into Eqs. (6) and (11), we get 
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   Integrating (59), we obtain the exact solutions to the Eq. (1) as follows: 
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Also 1 2 3 4, , ,     and 5  are the roots of the polynomial equation 
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Case 4.If we take 1 , 1  and 4  then  
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where 4 10, 0.  
 
Respectively, solving the algebraic equation system (10) yields 
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where 0 4 0 0, , ,     and 1  are free parameters. Substituting these results into Eqs. (6) and (11), we get  
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Integrating (70), we obtain the exact solutions to the Eq. 

(1) as follow: 
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Case 5. If we take 1,   2  and 5 , then  
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where 2 4 1 0, , ,     and 2  are free parameters. Substituting these results into (6) and (11), we have  

 

 

0

1
0 3

5 4 3 23 04 2 1

5 5 5 5 5

,A d




 

   

    

 

   

         


                                         (81) 

where 
 

3 2

2

2
.

b n
A

an 


  Integrating (81), we obtain the exact solutions to the Eq. (1) as follow: 

When    51 , we have 
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(82) 

 

If we take      2

4

1    and 
1 > 2 , then we get  
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where  

    21110 2 K , 

 

      212110102  L . 

 

While      22

3

1    and 1 > 2 , we obtain 
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If we take        3

2

2

2

1    and 
1 >

2 > 3 , then we get 
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where 
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Y , 

 

      323210102  P ,        31210 2 Q ,          (86) 
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When        3

2

2

3

1    and 
1 >

2 > 3 , then we obtain  

 

 
3 0 1 3

0 7 7

1 3 1 1 2

2
( ) ( , ),

( )

A
E l

  
  

    

 
  

 
                                               

(88) 

 

3 2 1
7

1 2 3

( )( )
arcsin ,

( )( )

  


  

  


  
 

 
2 0 1 1 3 2
7

1 2 0 1 3

( )( )
.

( )( )
l

    

    

 


 
 

                                               (89) 

 

If we take        432

2

1    and 1 > 2 > 3 > 4 , then we get  
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n .                                                      (91) 

 
 
3. Conclusion 
 

In this study, we applied extended trial equation 

method to the KdV equation with power-law nonlinearity 

and constructed the bright and dark optical soliton 

solutions, elliptic function and Jacobi elliptic function 

solutions to this nonlinear physical problem. These 

solutions will be very useful for the study of nonlinear 

optics, nonlinear optical materials, fluid dynamics, plasma 

physics and many other areas. The results obtained with 

extended trial equation method are new and explicit forms. 

Afterwards, the focus will be on the application of 

supplemental integration techniques to acquire dark and 

singular optical solitons together with bright-dark combo 

optical solitons. Consequently, this method can be used as 

a suitable technique for nonlinear partial differential 

equation to obtain different types of optical solitons. 
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